欢迎光临深圳市斯麦迪电子有限公司,TEL:0755-8383 5550.

VoI.1 COG 特性及高耐压MLCC的特点与替换解决方案

2018-10-05 14:13:50

Vol.1 C0G特性及高耐压MLCC的特点与替换解决方案 概要

电子设备中拥有各类电容器,并分别发挥着其各自的特性。一般情况下,电容器的电容量与耐电压(而定电压)无法兼顾,且属于此消彼长的关系,在相同尺寸下,耐电压提高,则电容量会出现下降趋势。
薄膜电容器拥有高耐电压,且具备恰到好处的电容量,同时,由于频率特性及温度特性优异,因此多用于车载电子设备、产业设备及家电设备等产品中。
但近年来,用于温度补偿(种类1)的MLCC(积层贴片陶瓷片式电容器)中,耐电压与电容量也出现了明显扩大,尤其在谐振电路等用途中,以往一般使用薄膜电容器的领域中也逐渐被MLCC所取代。
TDK开发的C0G特性·高耐压MLCC是一款在行业最高等级的广电容量范围(1nF~33nF)内实现了1000V耐电压的产品。
以下将通过C0G特性·高耐压MLCC的特点与薄膜电容器进行比较,并就各种替换的优点进行说明。

主要电容器特性

通过电介质陶瓷材料的不同,MLCC大致可分为种类1(温度补偿用)与种类2(高介电常数类)。
种类2的MLCC拥有大容量特点,但也存在因温度的变化导致电容量变化率大的缺点。另一方面,种类1的MLCC虽然无法达到高介电常数类产品的大容量,但由于温度变化导致的电容量变化率较小,且由于频率特性优异,因此被用于对精度要求较高的电路等。

铝电解电容器、薄膜电容器、MLCC(种类1及种类2)等主要电容器的额定电压-电容量应对范围如图1所示。

图1:各类电容器的额定电压-电容量的应对范围

图1 各类电容器的额定电压-电容量的应对范围

在电容量较大的产品中,种类2的MLCC达到了电容量为100μF以上的铝电解电容器所能达到的容值。此外,种类1的MLCC以往只与少部分薄膜电容器的容值范围相重叠,但近年来,随着高耐压化与大容量化的发展,重叠的范围迅速扩大。
薄膜电容器以及MLCC的特性比较如表1所示。

表1:主要电容器特性比较


薄膜
电容器
MLCC
(种类1)
MLCC
(种类2)
高容量
耐电压
温度特性
频率特性
ESL特性
DC 偏压特性
耐湿性
寿命及可靠性
小型化

:优秀 :良好 :一般

铝电解电容器的特点在于大容量,而其他特性方面,薄膜电容器以及MLCC更为优异。此外,比较薄膜电容器以及种类1的MLCC可发现,薄膜电容器在小型化方面存在难点,而种类1的MLCC则在大容量化以及提高耐电压方面存在课题。

种类2的MLCC的电容量随着温度的变化也会产生大幅变化,而种类1的MLCC基本上保持着直线变化。该直线对于温度的倾斜度称为温度系数,单位为[ppm/°C]。
JIS标准及EIA标准对温度系数值及其允许差进行了分级。在EIA标准内最为严格的C0G特性MLCC(种类1)中,在-55~+125°C的温度范围内,温度系数规定为0ppm/°C,允许差规定为±30ppm/°C。
薄膜电容器与MLCC的温度特性(温度变化导致电容量变化)如图2所示。

图2:C0G特性MLCC与各类电容器温度特性(温度变化导致电容量变化)的比较

图2  C0G特性MLCC与各类电容器温度特性(温度变化导致电容量变化)的比较

从图表中可以看出,相比X7R特性MLCC(种类2)、U2J特性MLCC(种类1)以及各类薄膜电容器,C0G特性MLCC拥有极为稳定的温度特性。

在谐振电路中使用C0G特性MLCC的理由

将电容器的电容量设为C,线圈电感设为L,则电容器与线圈(电感器)相互组合的LC谐振电路的谐振频率(f)可以用公式f=1/2π√LC表示。从该公式中可以看出,谐振电容器的电容量变动将会引起谐振频率的变动。若谐振频率一致发生变化,则应传递的波形将会发生扭曲,从而导致能源传输效率降低。
为此,以往在高电压,且有大电流流经的车载电子设备等谐振电路用途中,会使用相对于温度变化较为稳定的薄膜电容器。
同时,如上述公式所示,谐振频率越低,则需要电容量越大的电容器。车载电子设备谐振电路中的谐振频率设置在数10kHz~数100kHz,因此耐电压及电容量都很高的薄膜电容器较为适用。
然而,如前所述,由于近年来,种类1的MLCC耐电压与电容量的发展迅猛,将薄膜电容器替换为C0G特性MLCC的生产商不断增加。这是因为MLCC相比薄膜电容器体型更小,通过高精度的共振来提高传送效率,实现节省空间的特点。